
LLNL-CONF-413143

A Software Quality Engineering
Maturity Model

Gregory M Pope, Ellen M Hill

May 19, 2009

Better Software Conference
Las Vegas, NV, United States
June 8, 2009 through June 12, 2009

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

A Software Quality Engineering Maturity Model
By Gregory M. Pope CSQE and Ellen M. Hill CSQE

Since this paper is about Software Quality Engineering it is appropriate to start by
defining how the term will be used in the context of the following discussions. According
to Roger Pressman, author of Software Engineering, A Practitioners’ Approach,
everyone feels they understand Software Quality1. The definition of software quality
varies however. Tom Demarco say’s “a product's quality is a function of how much it
changes the world for the better”2, which is pretty subjective and dependent on user
satisfaction. Gerald Weinberg’s definition is similar, "Quality is value to some person".
Steve McConnell points out there are two parts to software quality: internal and external
quality characteristics. External quality characteristics are those parts of a product that
face its users, where internal quality characteristics are those that do not3. Software
quality has also been broken down into numerous sub categories (or “ilities”). They are
correctness, efficiency, maintainability, portabili ty, scalabili ty, integrity,
understandability, reusability, reliability, testability, usability, to name the most common.
These quality subcategories are not necessarily independent. For instance, code that lacks
correctness (has many defects) will likely be harder to port, scale, or maintain. In fact,
correctness could influence every other quality factor.

Most of us have probably had at least some experience with software that lacked quality,
especially if we tend to be early adopters of newly released commercial software
products or we have tried to code and execute sample problems found in Computer
Science text books. In this paper software quality will be treated as the combination of
two main characteristics:

1. The software’s features meet or exceed the user’s expectations

2. The software design minimizes the number and severity of perceivable deviations
from expected behavior

The first definition of software quality implies that user’s will judge subjectively the
value of the software against some preconceived notions of behaviors and feature sets.
This definition reminds developers of the importance of understanding the expectations
of the user and the norms for the marketplace segment(s) the product competes in. For
custom software this could mean fulfilling the requirements of a “one of kind”
specification and contract. For software products that sell into mass markets, determining
user expectations may be a complex endeavor, requiring extensive marketing research
and focus groups. The second definition of software quality implies that the product must
also be defect-free enough (have enough correctness) to be reasonably reliable and
predictable. Software that has all the features that user’s desire will not be perceived as
high quality if it crashes every five minutes, likewise, software that is defect free (if that
were possible to prove), would not be considered high quality if it was missing the
features that users expect and need.

2

Other industries, such as aviation, automotive, and medical, which have existed for years
without software, are increasingly using software embedded in their products. The
expectations set prior to software being used in these industry products also determine
user expectations. It would be unimaginable for a commercial airline pilot to announce on
a flight to Denver that the latest version of the flight control software is not compatible
with instrument landings above 5,000 feet, and since Denver has fog the plane must land
in Phoenix instead. It is common however for modern operating systems to be released
without having support for all drivers. Likewise a car manufacturer would be hard
pressed to move inventory if their vehicles would not have ABS, climate control, and
reverse gear until service pack one is released in six months. We may however see a new
operating system on the shelf for sale with features found in previous versions missing.
Imagine a medical company offering free radiation treatments while their latest device is
being tested and waiting for FDA approval. Operating systems and office software often
offer free beta versions. User’s expectations can vary for software quality depending on
the norms of a particular industry where the software is used.

Engineering can be defined as a discipline which applies technical and scientific
knowledge to accurately predict the performance of a design, process, or system in the
physical world in order to meet a desired objective or specified criteria. Engineering
would be the antithesis of “trial and error”. Therefore Software Quality Engineering is a
discipline that applies technical knowledge and computer science expertise to accurately
predict the effectiveness of a software development process to produce a product or
service that meets its desired objectives. Software Quality Engineering includes both the
process and the product. A practitioner of this activity would be a Software Quality
Engineer. Software Quality Assurance would be the activities that confirm that
Software Quality Engineering is taking place on the software engineering process being
used, such as an audit against a process standard or an assessment. Software Quality
Control would assure that Software Quality Engineering is taking place on the product
being developed, and would consist of activities such as inspection and testing of the
product.

Distinguishing Software Quality Engineering from Software Testing. In the
commercial software industry the term Software Quality or Software Quality Engineering
or Software Quality Assurance is often used to describe practitioners or groups that
primarily engage in system level testing activities. Certainly software testing is part of
Software Quality Engineering if it is done using technical and scientific knowledge to
predict the outcome of running a test case. The test’s outcome is usually expressed as the
expected result of running the test case. The expected result is compared to the actual
result to determine whether the test passes or fails. Testing has two purposes in theory, to
validate that the software meets its requirements and to expose any defects (variations
from the requirements or unexpected behavior). All too common in practice however, is a
lack of up to date requirements in enough detail to be useful for building test cases.
Without adequate requirements, software testing becomes more a defect exposing
discipline than a requirements validation discipline. The old adage “you cannot test in
quality” stems from the fact that if the software does not do what the customer requires it
to do, exposing and removing most of the defects will still not allow the software to do

3

what the customer wants it to do. Testing is a detection activity and commonly used
during the software development process (hopefully not just at the end). The creation of
good tests (the fewest number of tests that cover the most features and code and find the
most defects) is as complex technically as the creation of good code (the fewest lines of
code that implement the most desired features and contain the fewest defects). However
Software Quality Engineering encompasses many more detection and prevention
activities beyond those associated with testing. Software Quality Engineering includes
processes that can be used to elicit, analyze and trace requirements, architecture, design,
and interface design and optimization, coding standards, inspections and reviews,
templates and checklists, audits and assessments, change management, configuration
management, static and dynamic code analysis, assurance of compliance to governing
standards, determining customer satisfaction levels, analysis of trends and root cause
analysis, measurement of the effectiveness of development processes, automation of
development processes such as make/build, requirement tracking, defect tracking, design
tradeoffs, inspection and review, risk assessment and risk management, as well as all
aspects of unit, integration, and system level testing. Many software quality organizations
such as the American Society for Quality (ASQ) would also include software project
management as another software quality discipline. Certainly having capable software
project managers who understand software quality engineering and are experienced
developers themselves will increase the likelihood of a project’s success.

Who does Software Quality Engineering? Software quality engineering can be
accomplished with or without a software quality engineering group or designated person;
however success will be more likely with a group dedicated to software quality
engineering. Developers are often working to tight deadlines and the main focus of their
efforts is to develop software for the end product (or service). When process
improvement ideas occur to developers they may not have sufficient time to actually
develop the ideas further and implement them. Unfortunately the need for process
improvement often becomes obvious after a failure or missed objective, stretching
resources even thinner for the remainder of the project. Despite this, if the time needed
to make the process improvement is short enough (a few hours); it still may have a
chance of getting done by developers. For process improvements that require more than a
day to implement, having a person or group dedicated to Software Quality Engineering
would increase the chances of the new idea getting developed further, evaluated, and
rolled out. Management can also accomplish Software Quality Engineering (SQE),
however their primary focus is staffing, budgeting, scheduling, status meetings, work
arounds, and risk mitigation. Also, project management may or may not have a
background in software development. Understanding that a process needs to be improved
is relatively easy. How to improve the process usually requires technical knowledge and a
background in computer science. To actually make the improvement usually requires
experience in software development.

What about lean environments, agile teams, or smaller companies where there is not the
ability to support a software engineering group or engineer? In these environments
developers, system testers, and program managers can set aside time to discuss ideas for
improving processes. SQE can be a topic of regular scrum sessions or project meetings.

4

Good ideas may have to wait for the next project if they require a substantial time
commitment to implement, or they may have to be accomplished in small steps as time
permits. The idea of a best practice forum to share what other small teams are doing may
allow leveraging of tools already in use somewhere else in the enterprise. More about
Best Practice Forums follows later. The use of an experienced consultant may be another
option to jump start a new tool or process. Another option would be a training class to
expedite learning a new development process. Another source of good process
improvement ideas is to belong to local chapters of software organizations and attend
talks. SQE by walking around is another way to gather ideas. Methods of gathering
information, some of which may be helpful, others not as helpful, include: attending
symposia, listening to speakers, and meandering through the vendor exhibits. Even
learning from other industries, being aware of how businesses outside the software
industry operate may be a source of ideas.

The success of a software quality engineer or software quality engineering group is
greatly enhanced when the members are experienced software developers themselves.
There are three main reasons for this:

1. They can interact with developers speaking the same language and gain respect
and trust sooner.

2. They have a better appreciation for what the developer’s challenges are since they
have done similar work themselves.

3. They can use their developer skills to actually implement process improvement
tools which are recognized by developers as value added.

Despite these good reasons, all too often those responsible for software quality
engineering may not have actual developer experience. When this is the case friction is
more likely to develop between developers and those responsible for software quality
engineering. Software quality engineers may mistakenly view developers as adverse to
quality or process improvement, and software developers may view software quality
engineers as roadblocks to getting work done, or worse.

Where to start? The best place to start a software quality engineering program is in the
area of testing. There are a couple of reasons for this:

1. Testing is usually not the developer’s favorite area of software development.
System testing is likely done by a separate group from development. As such,
offering to help with system testing usually will not be resisted heavily by
developers. What will be resisted heavily by developers is to ask them to spend
more time doing design, spend more time analyzing requirements, spend more
time inspecting code, more time documenting what they do, or spend more time
doing unit testing. Offering to help with system testing does not really require the
developers to do more work. Usually system testing groups are willing to accept
help, or alternatively developers are willing to accept help with testing.

5

2. After getting buy in of the developers to help with system testing, make the
following offer: If testing shows that there are no defects in the code that the
developers are writing, then there is no need to improve the quality of the
software development process. If testing shows that there are defects in the code,
then the defects will be analyzed to determine how they got into the code and how
to detect them earlier or prevent them from getting into the code in the future.
Most developers will agree with this logic and tend to be confident that few
defects will be discovered.

Of course there will be defects to find in the software under most circumstances. If any
kind of decent testing is performed these defects will be exposed. Analysis of the defects
may lead the software quality engineer to conclude that upstream prevention and
detection techniques should be added to the existing software development process. This
can be discussed with developers, who can see the need for the improvements based on
what is found during testing, not based on opinion.

An environment where software is being developed to regulatory standards is another
way to get a software quality engineering program started. This would be true for
government contracts, medical software, safety software, or avionics codes. In this
environment it may be difficult for developers to remember all the various compliance
regulations that they must adhere to. Software quality engineering can help developers by
mastering the myriad of compliance standards and simplifying it to a minimum set of
processes, which if followed, make the software developed be in compliance. In some
cases government regulations reference other regulations which reference yet other
regulations. Sometimes the standards may be ambiguous and even contradictory.
Understanding how to apply the standards in a concrete fashion to a particular project
may be viewed by developers as helpful and welcomed. The software quality engineering
function would be viewed by developers as a protecting function, much like a lawyer
advising a client on how not to get sued.

Depending on the particular enterprise, market conditions, and historical factors, getting
started with software quality engineering is always easier when the initial tasks involve
doing things that are perceived by developers as helpful rather than adding to their
burdens. Simply pointing out what developers could improve on without the ability to
help solve the problem is of little value, but is not that uncommon.

How to get buy in. Developers are more likely to utilize knowledge and take advice from
other developers who are regarded as either their peers or even more experienced in the
field. In the software development food chain, developers will be more likely to emulate,
aspire and take advice from the highly regarded developers than from a software quality
engineer. This is a pretty universal human trait. While the software quality engineer may
have previously been a very highly regarded developer, that reputation may not have
followed into the new job. Therefore a good strategy to avoid this communication block
is to have developers meet and share best practices from other organizations or industry
among themselves. A name for this is a best practice forum, which can be a meeting or an

6

e-forum, or both. What is most important is to create a safe environment, similar to a
structured inspection session, where it is okay, in fact encouraged, to share openly and
honestly what is working well and what is not. Management should be kept out of these
forums, and software quality engineering should participate as interested listeners only.
The taking of notes, distribution of minutes, updating of forum content, meeting
announcements, and other support can be handled by software quality engineering to
make it easy for developers to share their information.

Another approach to consider is the idea of pilots or prototypes. This is especially helpful
when rolling out new tools or technology. Rather than describe a new tool or technology,
the software quality engineer can set up a pilot program using the new tool in a non-
interfering way on some small part of the project. For instance a new defect tracking tool
could be installed and the data base loaded up with a sampling of defects from whatever
is being used to track them currently. The software quality engineer then can ask
developers to try the new tool out and evaluate it. This way the developers are actually
involved in the decision making process and their perspective can be quite informative.
The pilot creates more work for the software quality engineer, but it saves the developer
from the time and frustration of getting some new tool up and running in the target
environment. If the pilot looks promising, let the developers evangelize the new tool
among themselves. When time comes to roll the tool out software quality engineering
will participate or do most of the installation tasks. If the pilot is resisted or good reasons
are found to not use the tool, only minimal time is lost by developers.

Of course one drawback to the pilot and best practices approach is that software quality
engineering may not receive much individual credit for the improvements made. It is
therefore important to staff software quality engineering positions with team players who
do not mind others sharing or getting credit for improvements. A similar approach was
called egoless programming over thirty years ago4 today this concept is just being applied
to software quality engineering as well. The focus is on principles (does the tool or new
process actually help or not) and not personalities (somebody with an assertive
personality or influence champions the idea). Assuming that an egoless approach is
possible in your organization and that you can find some ways to help developers
initially, then the challenge becomes how to engage in continuous process improvement
for software quality engineering.

Another key to getting started in an organization that has multiple software projects going
on simultaneously, possibly managed by different departments, is to utilize a risk based
approach to determining the appropriate level of software development process rigor to
use on a given software project. The highest level of rigor should be reserved for codes
which involve safety directly. If these codes fail people can be killed or seriously injured.
A lesser level of rigor could be used on codes whose failure would cause substantial
financial loses. Codes that could fail and cause minor financial losses could use a lesser
level of rigor. Codes that are prototypes or throw away code would have the least level of
rigor. The use of risk consequence and likelihood of failure allows the software project to
develop a risk score, and based on the risk score choose an appropriate level of rigor.
Levels of rigor could be managed (highest), documented, understood (lowest). A

7

managed level of rigor requires the highest amount of planning, engineering processes,
and complement of automated tools. A documented project requires less up front
planning but artifacts deliberately and intentionally generated as part of doing the
process. Understood requires the least level of rigor, planning, and tools, and only
artifacts generated as part of doing the process.5 What is important is that software
quality engineering applies to the enterprise’s projects in a graded approach, such that it
neither needlessly encumbers projects nor allows important information to escape. A risk
based approach also addresses the projects who might otherwise claim that software
quality engineering does not apply to them because their project is somehow special (this
could include the majority of the enterprise’s software projects).

Software Quality Engineering Maturity Model? In order to provide a roadmap for
continuous improvement of software quality engineering after getting started, the
following maturity model approach is proposed. Most contemporary software developers
are comfortable acknowledging the maturity levels of the software development process.
What is not talked about much is the maturity level of the software quality engineering
process. Software quality engineers are notorious for not taking their own advice, just as
many testing tools are notorious for not being fully tested. Perhaps it is time to also look
at software quality engineering as a process that has distinct and measurable maturity
stages. The staging approach has some distinct advantages:

1. Allows organizations or individuals to identify where they are on the maturity
spectrum

2. Provides a roadmap on how to get better at software quality engineering

3. Gives hope to those that have always assumed that the purpose of software quality
engineering has been as a watchdog or obstacle that must be tolerated or avoided

To be consistent with the software engineering model, a five stage model is suggested in
Table One.

Software
Quality

Maturity
Stages

Characteristics

Stage 1 Whiner or the Software Quality Engineering Know-It-All
Stage 2 Reading & Writing Documents
Stage 3 Measurements
Stage 4 Measurement Based Improvement
Stage 5 Implement Improvements

Table 1. Software Quality Assurance Maturity Stages

8

Stage One: Whiner or the Software Quality Engineering Know-It-All

In this initial stage of maturity the software quality engineer or group would likely be
guilty of at least some of the following:

• Pointing out what is wrong with software development process based on
preconceived notions (perhaps derived from a different context)

• Alienating developers. Little empathy for the developer’s challenges
• SQE seen as a road block or at best a necessary evil
• SQE not seen as a value added

This stage unfortunately, is the usual starting point for many SQE groups. The group or
individual may consist of non-developer types who know just enough about software
development to be dangerous. They may be former developers who have had difficulties
in the past fitting in on teams. Or they may consist of software quality engineers who
have come from a different industry6 where things are done more formally. They may
specialize in Quality Assurance in areas other than software, for instance in mechanical
or electrical engineering.

Phrases that may be heard during Stage One are:
Developer Here comes the SQE, I am going to duck into the men’s room.
Manager I thought adding quality was going to save us money and shorten the

schedule
SQE The developers don’t seem to care much about quality
Stakeholder Have not heard anything about the new release, things must be going

well

Whining: Stage one SQE’s are eager to point out, ad nauseam, what is wrong with the
current software development process. They tend to alienate the development teams with
their observations of the obvious and then combine that trait with a lack of ability to offer
viable solutions. They do not usually command the respect of the developers, so they
must depend on management for empowerment. Management is reluctant to fully support
the stage one SQE function because of the complaints that flow back from developers and
the delays, which inevitably get blamed on the SQE group. The stage one SQE group see
themselves as traffic cops, protectors of cyber space, and they hold developers as mostly
slothful malcontents who live to violate rules and release bug filled code. The stage one
SQE group see themselves as saviors of the organization, victimized and abandoned by
uncaring management that focuses solely on delivery dates and cost cutting.

Negativism: Stage one SQE’s often see their job as one of finding fault with the way
things are done. The more faults they find, the better they are doing their job. They tend
to always see the glass half empty. They know how to make even minor problems sound
like the sky will fall and all is lost. Their biggest fear is not being able to find something
wrong with a software project, because in their mind this would mean they are not doing
their job. Stage one SQE’s seemingly have a high probability of winding up on regulatory

9

boards, oversight panels, or audit teams. Their negativity can sometimes be mitigated by
large documentation packages (stage two behavior), but the th ickness of the
documentation is not necessarily a good indicator of the quality of the software.
Criticizing developers (or anyone for that matter) without relief will usually alienate the
developers to the point that they avoid SQEs altogether. This may explain why so many
stage one SQE’s are relegated to regulatory boards and oversight panels, nobody wants
them on their projects. Finding what is wrong is a relatively easy skill to master, that is
why it manifests in stage one. News programs and talk show hosts have long since
discovered the ratings power of negative news and soliciting complaints. Few if any
Eagle Scouts, relief agency volunteers, or good parents will be featured on the news
tonight. While it may be tempting to fall into this popular societal trap, an SQE is not
after “ratings” and should always strive to find areas of developer strengths to exploit.

Isolationism: Often the stage one SQE function becomes isolated from the developer
group. The SQE group is excluded from important meetings. Developers avoid them,
often running the other direction when they are spotted lurking around the developer
spaces. The only time these SQE’s are sought out is when there is a meeting with the
customer or an audit. SQE’s can then expound at great length with slick presentations
using Power Point slides that show all the quality mechanisms that are in place (and hope
no one asks if these procedures are really followed). Having become sufficiently
frustrated in stage one, the SQE group is ready to move on to the next level of maturity.

Developer Staffing: One way to move from level one to level two is to get the ‘right
people on the bus’, as Jim Collins discusses in his book “Good to Great’7. Collins
suggests that for an organization to move from good to great they must have the right mix
of people in the organization – with common goals and focus. This can apply to the
developer or SQE organization. An example of this concept was a software development
project that, due to a reduction in workforce, totally changed their development staff with
significant positive results. Prior to the changing of the whole staff, customers were
becoming more and more dissatisfied with the errors in the software product when
released and the time they (customers) had to spend to debug their applications with each
new release. In this case it was critical to restructure the development team with the goal
of regaining customer trust for reliable and robust products. The previous team did not
understand the need for basic software engineering processes such as configuration and
release management and viewed the SQE as a nag about the importance of following
accepted software engineering and development practices. Another example was an SQE
group that was led and staffed by members who considered themselves far more
experienced than the developers they were working with. They continually expected their
suggestions to be adopted without explanation or developer buy-in. Eventually this SQE
group had to be partially replaced with members who were willing to explain the reason
for a process change, get buy-in by demonstrating results using a pilot, and not need to
take credit for the improvement. With the right people on the project, both the developer
group and SQE group quickly regained customer trust and began delivering a high
quality product.

Some of the signs of a project moving from Stage One to Stage Two include:

10

 Basic processes being followed
 SQE viewed as, at least somewhat, helpful
 Developers don’t run & hide from SQE

Stage Two: Reading and Writing Documents

Some of the traits of Stage Two include:
• Recognize compliance more important than opinion
• Focus on writing standards and processes that implement compliance
• Great documents do not necessarily equate to great software.
• Department of Defense (DoD) historically has emphasized importance of

documentation

Documentation: At some point, usually past the mid-point of the software development,
somebody will realize that the requirements and design documentation, test cases, and
user guide that was promised to the customer has not yet been written. Also, there is no
Software Quality Plan or Test Plan. Questions are coming up about what the contract
says, or what the company standards require, a typical solution is to use the SQE group to
backfill these documentation tasks. Management is happy to do this since it will keep the
SQE group out of the developers hair and keep them pinned down to their desks writing
instead of continuing to ask management to intervene on their behalf. SQE’s should not
only be good at creating documents, but be able to use compliance flow downs and cross-
walks to simplify life for developers and the software project.

Compliance: A helpful function for SQE to provide for a software development project
or enterprise is to understand and communicate the flow down of compliance documents.
It would be unreasonable to expect developers to be completely familiar with the details
of compliance documents, industry standards, and contractually binding language.
Developers have enough on their plates understanding the technical requirements and
their development language and environment. SQE can simplify a developer’s life by
evaluating the compliance requirements and provide a flow down to show which of these
requirements apply to a given software project. This is even more important in regulated
industries such as defense, aviation, medical, and government sponsored projects.
However, there may well be compliance requirements in commercial enterprises, both
internal standards and those imposed by contracts with external partners or customers.
What is important for the SQE to do is to determine which set of minimum processes and
rigor a development group must follow to be in compliance with these requirements. For
instance the SQE function could read and analyze a three hundred page contract and then
advise software developers that to be in compliance they need only develop and release
code in a configuration management (CM) repository, utilize a defect tracking tool, and
develop a set of acceptance tests. This is called flowing down the compliance
requirements, a value added task for SQE.

Experienced SQE’s would be able to derive the minimum set of deviations from an
enterprise’s standard practices in order to be in compliance, ask for waivers if warranted,

11

and resolve ambiguous requirements. For instance a customer may require that the
enterprise deliver bug free code. The SQE would recognize the conundrum of the
statement “bug free code” and stipulate that bug free code be defined as a released build
passing all customer preapproved acceptance tests. It is clear that the customer wants a
good product, but they may not understand the implications of asking for bug free code.
The compliance to governing standards will be documented in a Software Quality
Assurance plan, usually at the beginning of the document, showing how all the
compliance requirements are covered by the rigor of the processes that are used on a
given software project.

In creating the Software Quality Assurance plan “gaps” between what is required for
compliance and the actual processes being used may be uncovered. The SQE could
suggest a waiver with justification or that the process rigor is improved to close the gap.
An example of this might be a requirement that test procedures be documented. An SQE
may be able to show that the substitution of spreadsheets with test data values and test
scripts written in java code using junit, rather than hand written test procedures, will
satisfy this requirement. The underlying principle is that tests can be understood before
they are run and that they are repeatable.

Crosswalks: Often times the software development project may be under the compliance
requirements of multiple standards. For instance one cited by the customer in the
contract, and the other an internal enterprise standard. The SQE may develop a cross-
walk document to show how the enterprise’s internal standard maps to the external
customer’s contract. Using a cross-walk approach the enterprise may be able to show that
all the customer’s external compliance requirements will be met if the internal standard is
followed. The cross walk may also show gaps that will require waiver with justification
or a process rigor improvement. Cross-walks are usually formatted as a table or
spreadsheet.

Cross-walks are also useful in heavily regulated industries where multiple agencies may
impose multiple standards, which include redundancies and conflicting direction. The
SQE function can show with a cross-walk how the sections of different standards are
related and where they might conflict. In areas of conflict, one of the standards must be
given precedence over the other. For instance, a software safety standard may be cited in
the contract, but in another cited standard best commercial practice is required. Prima
facie this may seem to be a standards conflict, since developing a code for a safety
application requires much more rigor than commercial practice. The SQE could resolve
this conflict by assuring the system design relegates the safety code to an isolated
platform and power source completely separate from the majority of the code, which is
not safety related. Therefore the safety code in the safety subsystem would need to be in
compliance with the safety standard, and the remainder of the code in the non-safety
related sub system would be built using adequate but less rigorous practices or best
commercial practice. Another task for the SQE might be to determine what “best
commercial practice” means if that phrase is used in the compliance document, since
there is no single best practices set for every software project in every industry. The SQE
may cite the enterprise’s internal standard as meeting the requirement of best commercial

12

practice, and of course if the enterprise does not have such a standard, write one. Figure 1
shows an example of cross-walks between multiple standards. Figure 2 shows how the
standards flow down into project Software Quality Assurance plans. While all of this
sounds simple and makes good common sense, it does require effort and is a task that a
stage two SQE should be able to master. The purpose of utilizing an SQE to do flow
down and compliance is to relieve the developers from having to remember all the
compliance requirements; instead, developers simply need to follow a Software Quality
Assurance plan that has been flowed down from various compliance requirements.

Figure 1. Cross-walks.

13

QC-1 Organization
(2.3)

Records
Management
(3.14 paragraph 1)

Independent
assessments
(3.15)

Corrective
Action. (3.1.5.4)

SQA Process for
software that is
purchased, developed
or developed under
contract .
(3.16 paragraph 1)

Risk-based and
graded approach.
(3.16 paragraph 2)

Requirements
(3.16 paragraph 4)

SCM
(3.16 paragraph 5)

V&V activities
(3.16 paragraph 6)

DOE
414.1B

Imple me nt
using
grade d
approach

Criterion 1—
Program.

Crite rion 2—
Pe rsonnel
Training

Criterion 3—
Quality
Improvement

Crite rion 4—
D ocume nts and
R ecords

Crite rion 5—
Work Proce ss es

Crite rion 6—
De sign

Criterion 7—
Procure me nt

Criterion 8—
Inspe ction and
Acce ptance

Criterion 9—
Manage ment
Proce ss
Asse ssme nt

Criterion
10—
Inde pende nt
Asse ssme nt

NQA1-2000 401 Show the
mathematica l
models are
correct

801 Software
Design process
shall be
documented,
approved and
controlled

801.1 Software
Design
Requirments

801.2
Software
Design

801.3 Implement
using
appropriate
standards and
conventions

801.4
Software
Design
Verification

801.5
Computer
Program
Testing

802 Software
configuration
management

900
Documentation
and Records

10 CFR 830 Implement using
graded approach

Criterion 1—
Program.

Criterion 2—
Personnel
Training

Criterion 3—
Quality
Improvement

Criterion 4—
Documents and
Records

Criterion 5—
Work Processes

Criterion 6—
Design

Criterion 7—
Procurement

Criterion 8—
Inspection and
Acceptance

Criterion 9—
M anagement
Process
Assessment

Criterion 10—
Independent
Assessment.

Institution's SQAP

SQAP
Team A

Project
Required Practices

SQAP
Team B

SQAP
Team C

SQAP
Team D

Many SQAPS
Lib/Feeders

Figure 2. Standards Flow Down into Software Team’s Software Quality Assurance Plan

Phrases that may be heard during Stage Two are:
Developer Glad SQE is off our back, now we can get some work done
Manager Finally found something useful for SQE to do
SQE How are we ever going to get all these documents written
Stakeholder The documentation for the release is thick, should be good

The trouble begins when the Stage Two SQE group realizes that they cannot write the
technical requirements down without speaking to the developers. They start asking the
developers a lot of questions about the requirements when the developers are trying to
meet tight deadlines. Documentation after the fact is of little value, the group soon learns
the wisdom of producing artifacts as a result of naturally doing the software development
process.

Artifact Capture: During this advanced stage two activity, the SQE group may
recommend tools to be used to assist the development team with their code
documentation and tracking and analyzing requirements. These tools may include:

 Artifact capture tools: Doxygen to extract formatted documents out of code
comments and headers, Source Forge trackers to capture design tradeoffs

 Requirements capture: Source Forge Tracker, Bugzilla, Gira and Round Up to
track and analyze requirements

 Configuration Management (CM) tools: CVS, Subversion, PerForce, ClearCase,
branching strategies

14

Some of the signs of a project moving from Stage Two to Stage Three include:
 Checklists exist for processes
 SQE group starts reviewing documents and comparing what the document says to

what is really being done (small internal audits or audlets).

Stage Three: Measurements

Stage Three traits may include:
• Realization that developers may not be doing what the documents state,

determined by audits.
• Develop a risk based approach to process rigor
• Capture and measure what is really being done
• Calculate the Cost of Quality
• Disaster recovery plans are written
• Inspection and Reviews added
• Static Analysis added
• Defect densities predicted
• Process maturity graded

Compliance: During this stage, the SQE group quickly realizes that the development
team is likely not doing what the documents state. They understand the importance of
writing short documents that accurately reflect what the project is doing and can be
defended to management and stakeholders, as well as pass an audit. The SQE group
begins to question what happens if disaster strikes … will all the work be lost, how can it
be recovered, who is responsible for such actions? The response to these questions is
typically included in a written disaster recovery plan for the project. If an organization
has a broader recovery plan the project needs to understand that plan and reference it.

Audlets: One way to gather information about the project processes with minimal
developer time is to conduct an ‘audlet’. This is an informal ‘mini-audit’ where the SQE,
usually following a checklist, interviews the development team to learn exactly what they
do and how they do it. The SQE then writes the documents and has the team review
them for accuracy and completeness. By using this approach, both the development team
and SQE group have a common understanding of what is being done and what is
contained in the documents.

Customer Surveys: A complementary approach to the ‘audlet’ is customer satisfaction
interviews. The SQE group interviews the key customers of a given product. They ask
the customers what is working and what is not working with regards to the software
product and interactions with the development team. The customer responses will guide
the SQE in understanding what needs to be documented and what needs to be measured
and improved.

15

Risk Based Approach: In order to assess the level of rigor needed for any given project, it
is important to understand its risk consequence and likelihood of failure. The risk
consequence addresses the impact to the Environment, Safety & Health, Performance,
Security and Political & Public Perception if the product fails to perform as expected.
Table 2a provides a general description for each risk consequence category and Table 2b
is an example automated tool.

Risk Consequence Category Description
Environment, Safety & Health Risks to the operating and external environment,

including: toxic release and cleanup. Risks to life and
limb. Risks of regulatory liability.

Performance Risks to meeting program requirements/goals. Risks of
system downtime and work stoppage. Risks to the
acceptable performance of critical functions, including
civil liability. “Critical functions” are those important to
the operation of the system or subsystem.

Political & Public Perception Risks to governmental and public confidence and
concerns.

Security Risks to program, product and material security.

Table 2a. Risk Consequence Categories

16

Table 2b. Risk Consequence Tool

Each of these categories has 5 tiers associated with them. Tier 0 is dire consequences and
Tier 4 is minimal consequences, with Tiers 1-3 being distributed between them. The
SQE group, in consultation with the development team, determines the appropriate risk
tier for each category. The highest level tier is used to determine the overall risk level of
the product. The professional judgment needed to select the appropriate levels of risk
consequence may require the SQE to work with other domain experts. Likewise choosing
the proper wording for each risk tier for a particular enterprise may require working with
one or more domain experts.

17

The likelihood of failure calculation takes into consideration many contributing factors of
the development environment. Table 3a and 3b below shows some of the more important
factors used in determining the likelihood of failure rating. The likelihood table shown
was constructed from and weighted according to the COQUALMO risk factors, which
trace their pedigree to 40 years of industry studies.8 Again, the SQE group, in
consultation with the development team, determines the appropriate score for each factor.
These are then weighted and combined with the risk consequence tier to determine the
overall risk level as shown in Table 4a and 4b.

Table 3a. Likelihood of Failure Table

L
ik

el
ih

oo
d

of
 fa

ilu
re

co

nt
ri

bu
tin

g
fa

ct
or

s Unweighted likelihood of failure score

W
ei

gh
tin

g

L
ik

el
ih

oo
d

of

fa
ilu

re
 sc

or
es

1 2 4 8 16

Product Volatility Monthly small
changes; annual
major changes

Small changes
every 2 weeks;
major changes
every 3-4 months

Daily small
changes; major
changes every 2
weeks

1.00

Software Complexity Simple Very high 2.25
Degree of Innovation Routine Proven Cutting edge 1.50
Software Size Small Medium Large 2.25
Technical Constraints Minimal

constraints
Highly
constrained

1.25

Process Maturity Managed,
optimized

Well
defined
processes

Repeatable
processes

Record of
repeated success

Little or no
history

2.25

Schedule & Resource
Constraints

No deadline and
minimally
constrained
resources

Deadline and/or
resources are
negotiable

Non-negotiable
deadline with
fixed resources

1.00

Risk Resolution Risks managed
and resolved

Uncontrolled
risks

1.25

Team/Org Technical
Knowledge

Solid domain,
technical, and
tool knowledge

Good skills, but
new knowledge
areas

New to field 1.25

Personnel Capability Top technical
ranking tier

Low technical
ranking tier

1.25

Team Dynamics Well established
productive team

New team 1.00

Team/Org Complexity Small collocated
team

Medium team
with critical
members
collocated and
external
organization
involvement

Large team, not
collocated, with
multiple
geographically
dispersed
organizations

1.25

Organization Reputation Long-term
reputable in
the field

New to the
field/ start-up

1.00

Weighted Factor Score
Subtotal

18.5

Weighted Average Weighted Factor Score Total/Weighting Factor Total (18.5)

18

Table 3b. Likelihood of Failure Tool

19

Table 4a. Risk Level Assessment Grading Table

Table 4b. Risk Level Assessment Grading Tool

This risk analysis results in a better understanding of the overall project risks and level of
rigor needed to mitigate those risks. Using the risk assessment tool results in a uniform
approach to risk assessment and creates an artifact of the risk assessment process. Risk
assessment should be revisited periodically to assure that it is still valid. The risk
assessment tool also has tables which delineate the software process activities:

1. Software Project Management and Quality Planning
2. Software Risk Management
3. Software Configuration Management
4. Procurement and Supplier Management
5. Software Requirements Identification and Management
6. Software Design and Implementation
7. Software Safety
8. Verification and Validation
9. Problem Reporting and Corrective Action
10. Training of Personnel in the Design, Development, Use, and Evaluation of

Safety Software

Consequence of
Failure Tiers
Tier 0 RL1 RL1 RL1
Tier 1 RL3 RL2 RL2
Tier 2 RL4 RL3 RL3
Tier 3 RL5 RL4 RL3
Tier 4 RL5 RL5 RL4

2 8
Likelihood of Software Failure Rating

20

The levels of rigor for the software activities span the spectrum from formally managed
where software that can cause injury or death requires strict processes while a proof-of-
principle code may only require understood practices. Table 4c is an example of the Risk
Grading tool’s recommended practices for the first four activities.

Table 4c. Recommended Practices

21

It should be recognized that doing an initial risk analysis to determine the level of rigor
for a software project does not take the place of hazard analysis for safety related codes.
The risk analysis would hopefully establish that a software project needs to do hazard
analysis because the initial risk assessment has determined that the Consequence of
Failure (Severity) and other development risk factors warrant it. Notice also that the
process rigor left hand columns (Table 4c) indicate the amount of control an enterprise
has over the software project. This can vary from none to major control depending on
whether the project is being done in house or by a supplier. Obviously the amount of
control over the project is related to the ability to control activities. For each software
development activity, the amount of rigor can vary from managed (M) to documented (D)
to understood (U). The activities also can be formal (F) or tailored (T). For instance on a
RL 1 project, activity 4 “procurement and supplier management”, sub activity “qualify
software for intended usage” would have to be a formally managed activity, on a RL 4
project the same activity and sub activity could be tailored and understood. After
discussions with software safety experts, future versions of this assessment tool will
change terminology to not be confused with more formal risk analysis techniques. The
terms “consequence of failure” will be changed to “severity”, “likelihood of failure” will
be changed to “development environment risks” and “risk levels” changed to “quality
levels”. Allowing the rigor of a software process to be appropriate for the level of risk
facilitates the use of a graded approach to an enterprise’s software quality engineering
process and avoids the challenges and lack of support that is encountered with the “one
size fits all” approach.

Inspections and Reviews: There are many ways to find and remove or measure the
number of defects in a code. Some of the developer time-intensive processes are code
walkthroughs, inspections and desk-checks. In each of these cases, the developers must
be prepared to discuss their code sections and review that of their colleagues. Another
obstacle to these methods is finding a convenient time and place to hold the sessions.
There are some tools that can ease the need for everyone to be available at the same time,
such as ‘GoToMeeting’, CodeStriker and SourceForge Enterprise Edition. These
electronic tools allow the team to review code and enter comments at their convenience.

Static Analysis: The SQE group can assist in finding code defects by using static analysis
tools on the integrated code builds. A static analysis tool parses the particular language
(such as C, C++, C# or Java) code and creates a database that can be used to check every
path in the code for 1,600 or so common coding mistakes. These common mistakes could
be simple things like not initializing variables, overflowing a string field, dereferencing a
null pointer, finding memory leaks or dead code. The ability of the static analyzer tool to
check numerous combinations of paths is its big advantage over manual techniques. The
reporting capability of these tools also allow for straight forward annotation of the
suspected lines of source code and examples of what the tool is complaining about. The
tool can also catch errors that are set up pages away from the actual problem line. More
sophisticated error types are also detectable, such as referencing a stale memory pointer.
At the system level, pre-filtering the results before presenting them to the development
team is useful. These tools are capable of finding so many poor coding practices that
initial unfiltered reports may overwhelm developers. Pre-filtering by SQEs allows the

22

news to seep out by severity and eliminate a single problem that is replicated in numerous
places. SQEs can even become skilled at fixing code or at lease suggesting fixes to
developers. An even better use of static analysis is to integrate the capability into the
developer IDE as a regular part of their development process. While initially benefiting
by finding defects at the system level, earlier detection and removal at the unit level costs
less and empowers developers. A sample output is shown in Table 5 below, the tool
shown is Klocwork Insight used as a plug in for Eclipse for C++ finding a stale pointer.

Table 5. Static Analysis Output

There are also several spread-sheet based tools that estimate the defect rate in code, such
as Boehm’s equivalent CMM level and the COQUALMO estimator. The SQE enters
information regarding defect insertion and removal activities into the COQUALMO tool,
as shown in Tables 6 and 6a, which are used to calculate the estimated defect rate for the
product. These tools have a couple of benefits, they allow code defect densities to be
predicted and then compared against defect densities found using the various detection
and removal methods. They also can help the SQE see which activities are allowing the
most defects to enter the software development process and which detection activities are
not being fully utilized. This can help prioritize future process improvement areas.
Information for the tool can come from both developers and SQEs. The analysis can also

23

be used as a “what if“analysis to set goals for defect prevention and detection methods.
This tool can be implemented on a spreadsheet.

Table 6. COQUALMO Estimator Tool – Defect Insertion Estimates

24

Table 6a. COQUALMO Estimator Tool – Defect Removal Estimates

Development Process Maturity Level: For the CMM tool the SQE enters information
regarding how often the project addresses key process areas, such as: Requirements
Management, Software Project Planning, Software Project Tracking and Oversight,
Software Subcontract Management, Software Quality Assurance and Management,
Software Configuration Management, Organization Process Focus and Definition,
Training Program, Integrated Software Management, Software Product Engineering,
Intergroup Communications, Peer Reviews, Quantitative Process Management, Defect
Prevention, Technology and Process Change Management. These values are then
combined to give an estimate of the project’s CMM level. A sample is shown below in
Table 6b.

25

Key Process Area (KPA) Evaluation Sheet

1 Requirements Management Frequently 75 Score 0
Almost Always 100

2 Software Project Planning Occasionally 25 Frequently 75
About Half 50

3
Software Project Tracking and
Oversight Almost Always 100 Occasionally 25

Rarely if Ever 1

4
Software Subcontract
Management Almost Always 100 Does Not Apply DNA

Don't Know 0
5 Software Quality Assurance Almost Always 100

6
Software Configuration
Management Almost Always 100

7 Organization Process Focus Frequently 75

8 Organization Process Definition Frequently 75

9 Training Program Frequently 75

10 Integrated Software Management Almost Always 100

11 Software Product Engineering Frequently 75

12 Intergroup Coordination Almost Always 100

13 Peer Reviews Frequently 75

14 Quantitative Process Management Almost Always 100

15 Software Quality Management Almost Always 100

16 Defect Prevention Frequently 75

17 Technology Change Management Almost Always 100

18 Process Change Management About Half 50

CMM Level 4.1667
Table 6b. Equivalent CMM Sample

These estimates provide the SQE group and development team a guideline as to how
effective their processes are and where improvements may lead to significant decreases in

26

defects. While not as accurate as a formal CMM assessment by a certified assessor the
Equivalent CMM tool can give an enterprise a rough idea of what their process maturity
level is. The output of this tool can also be used as a cross check of the COQUALMO
tool. The defect rate ranges for each CMM level have been collected from industry and
are available for comparison to the defect range estimated by the COQUALMO tool. The
estimates can also be compared against tables of defect rates by industry compiled by
Donald Reifer as shown in Table 6c.

Application Domain Number
Projects

Error Range
(Errors/KESLOC)[1]

Normative Error
Rate

(Errors/KESLOC)

Notes

Automation 55 2 to 8 5 Factory automation

Banking 30 3 to 10 6 Loan processing,
ATM

Command & Control 45 0.5 to 5 1 Command centers

Data Processing 35 2 to 14 8 DB-intensive systems

Environment/Tools 75 5 to 12 8 CASE, compilers, etc.

Military –All 125 0.2 to 3 < 1.0 See subcategories

§ Airborne 40 0.2 to 1.3 0.5 Embedded sensors

§ Ground 52 0.5 to 4 0.8 Combat center

§ Missile 15 0.3 to 1.5 0.5 GNC system

§ Space 18 0.2 to 0.8 0.4 Attitude control
system

Scientific 35 0.9 to 5 2 Seismic processing

Telecommunications 50 3 to 12 6 Digital switches

Test 35 3 to 15 7 Test equipment,
devices

Trainers/Simulations 25 2 to 11 6 Virtual reality
simulator

Web Business 65 4 to 18 11 Client/server sites

Other 25 2 to 15 7 All others

Table 6c. Defect Rates by Industry

Code Coverage (Dynamic Analysis): Once all the defect rate estimates are done, it is
important to then measure the amount of code that the test cases actually execute. If the
test cases are missing large portions of the code when run, defects in those areas will go
undetected. In addition, it is not uncommon for legacy projects to accumulate large
inventories of tests and to assume that test coverage is good based on quantity of tests. It
could be that many of these tests are simply redundant (test the same areas of code) and

27

can be eliminated. Most compilers have options that can be turned on to generate the data
needed and tools to view the code that was executed during testing. The sample below is
derived from the GCC compiler option using the GCOV tool. It shows the overall
coverage for the code graphically and numerically and allows the user to drill down
within each sub-directory. Using this information, the SQE can develop test cases that
execute the most important parts of the code. In this example, the SQE quickly sees that
the interp sub-directory has the lowest coverage. By drilling down into that sub-directory
the reason for the low coverage immediately becomes clear – only one interpolation
method has been executed. Ideally, the SQE would then create new test cases to execute
each of the remaining methods and re-run their coverage tool.

Sample GCOV Code Coverage Report

Current View: Directory
Test: Demo Instrumented Lines: 768
Date: 2009-04-22 Executed Lines: 315
Code Coverage: 41.0%

Directory Coverage
src/main 77.9 % 141/181 lines
src/interp 25.0% 126/504 lines
src/material 37.5% 21/56 lines
src/io 100% 27/27 lines

Current View: src/interp
Test: Demo Instrumented Lines: 504
Date: 2009-04-22 Executed Lines: 126
Code Coverage: 25.0%

Directory Coverage
linear.c 0.0 % 0/49 lines
cubic.c 0.0% 0/134 lines
hermite.c 0.0% 0/195 lines
bicubic.c 100% 126/126 lines

Code coverage tools usually allow the granularity of the coverage to measure individual
source statements or functions. Code coverage tools do alter the way the software being
measured is executed, and can add considerable execution time. Measuring statement
coverage will add more execution time than measuring function coverage. Coverage tools
do have some drawbacks besides slowing execution time, they do not test all data states,
and the tests used to measure the code coverage may not execute the software under test
in the same ways that a user might.

28

Two other useful dynamic analyzers are profilers, such as GPROF, and leak detectors
such as Purify. Profilers indicate the amount of time that the software spends in different
parts of the code. They can help find bottlenecks and areas of code that are candidates for
optimization techniques, such as an algorithm redesign (e.g. bubble sort changed to
binary sort) or use of a faster language (use compiler optimization or write the function in
C or assembler). Profilers can also be used to instrument code that is at customer
locations to better understand which functions customers use most frequently. Leak
detectors are a nice complement to static analyzers. Dynamic analyzers can find
situations where main memory or disk space resources are depleted, race conditions and
problems unique to multi-threading or parallel implementations exist, or interactions with
other system resources that cause problems which only occur during execution.

Return on Investment: Another measurement that management will want to understand
before embarking on a software quality expedition is ‘how much does this cost?’ and ‘Is
it worth the expense?’ True, the development of a quality product is not free. There are
the obvious costs of developer time, hardware on which to work, development
environments, test equipment, etc. Other costs, such as the impact of customer
dissatisfaction, can be more difficult to estimate.

There are four major categories to consider in estimating the cost of quality9:
 Prevention – quality planning, formal technical reviews, test equipment, training
 Appraisal – peer reviews, testing, equipment calibration & maintenance
 Internal Failure – defects found before release such as debugging, repair, rebuild
 External Failure – defects found after release such as complaint resolution,

product return, help desk support, warranty work

If an organization has effective processes for prevention, appraisal and internal failure
activities it may expect that their external failure costs will be minimized. Barry Boehm
and others10 have collected data that shows that the relative cost of correcting errors
increases exponentially as the development proceeds from requirements through
implementation. There is much debate over what the appropriate percentages for each
category should be for any organization to estimate its cost of quality. One study11 found
that initial estimates needed to be revised as it took about 6 months to understand how the
prevention and appraisal activities affected the internal and external failures. Typically
more time is spent on prevention and appraisal costs with the hope of minimizing the cost
of internal and external failures. As noted above, it is sometimes difficult to determine
the minimal cost of quality due to uncertainty in the external failure costs. Table 7,
below, is a diagram of the cost of quality balance12. In this diagram the total cost of
quality is the sum of all four categories. The appraisal and prevention costs will increase
as the code becomes better, which implies more errors are being found in these phases.
The internal and external failure costs decrease as the code becomes better because errors
are found in the earlier phases.

29

Table 7. Cost of Quality Balance

Example Return on Investment of Process Improvements - Cost of Defects :
Understanding the general concept of the cost of quality is one thing, but how does a
Software Quality Engineer go about applying this theory in order to decide if a quality
improvement is worth the cost? One of the important metrics to determine for justifying a
software process improvement is the direct cost of a software defect. Direct costs are
those which can be directly measured. Indirect costs include lost revenue, litigation,
higher insurance costs, higher costs of sales, longer sales gestation period, etc. and will
not be considered as part of this analysis. In order to approximate direct cost of a defect
for your project or enterprise a list of tasks was developed that represent the various
actions that must be accomplished to remedy a defect found after delivery. These tasks
are shown in Table 8. Next, average hours to accomplish the tasks were estimated. This is
multiplied by the direct labor cost including 30% overhead for benefits. In some cases
more than a single employee is involved with the task. The ODC column includes non-
labor costs such as telephone charges, media costs, etc. The chart below (Table 8)
indicates that the average direct cost of a defect for our example project is $6,621.50. Of
course some defects may cost much more than this, especially if foreign travel is
involved. For the sake of this analysis the average cost of a defect will be used.

Total Cost
of Quality

Internal &
External
Failure Costs

Appraisal &
Prevention Costs

Minimal Cost
of Quality

Defective Code Good Code

30

Table 8. Direct Cost of Defects

Cost of Process Improvement: The next item to be considered is the initial cost of
improving the software development process as shown in Table 9. The initial cost is a
one-time charge for improving the software development process. There also may be a
recurring cost of doing the new process and this will also be considered. There may be a
number of suggestions for improving the project’s software development process, but for
the example in this analysis adding inspections will be used. Again all the tasks are
delineated, with direct labor cost and overhead multiplied by hours. In some cases the
costs are quite high because of the number employees that need to be trained. According
to the assumptions, the initial cost of adding inspections will be $70,538.

Direct Cost of Defects
Task Time (Hrs.) Rate ($/Hr) Employees ODC Direct Cost

Tech Take Problem Report 1 $41.00 1 $50.00 $91.00
Tech Log Problem Report 0.5 $41.00 1 $20.50
Tech/SE Simulate Problem 8 $62.50 2 $1,000.00
Tech/SE Discovers Problem 4 $62.50 1 $250.00
Tech/SE Inform Engineering 1 $62.50 2 $125.00
Engineering Evaluation 8 $75.00 2 $1,200.00
Eng'g Isolates Cause 4 $75.00 2 $600.00
Eng'g Designs Solution 8 $75.00 2 $1,200.00
Eng'g Test Solution 4 $75.00 2 $600.00
TAC/SE Validates Solution 4 $62.50 2 $500.00
Q/A Regression Tests 2 $62.50 1 $125.00
Notify Customers 4 $41.00 1 $50.00 $214.00
Cut New Release 4 $62.50 1 $250.00
Revise Documentation 2 $41.00 1 $82.00
Distribute Patch 4 $41.00 1 $200.00 $364.00

Total 58.5 $6,621.50

31

Table 9. Cost of Adding Inspections Process

Table 10. Recurring Cost of Inspections

Recurring Cost of Inspections
Task Time (Hrs.) Rate ($/Hr) Employees ODC Direct Cost

Author Selects and Notify Inspectors 1 $75.00 1 $75.00
Author Selects Moderator/Scribe ,5 $75.00 1
Reserve Conference Room 0.5 $41.00 1 $20.50
Author Distributes Materials 1 $75.00 1 $75.00
Kick Off Meeting 1 $68.50 5 $342.50
Inspectors Inspect Work Product 2 $68.50 5 $685.00
Inspection Meeting 1.5 $68.50 5 $513.75
Defects Logged Into Tracking System 1 $62.50 1 $62.50
Author Corrects Defects 8 $75.00 2 $1,200.00
Inspectors Verify Fixes 1 $68.50 5 $342.50
Defects Closed 1 $62.50 2 $125.00
Metrics Updated 1 $62.50 1 $62.50
Follow Up 1 $68.50 2 $137.00

Total 20 $3,641.25

Cost of Adding Inspections Process
Task Time (Hrs.) Rate ($/Hr) Employees ODC Direct Cost

Create Preliminary Concept 4 $185.00 1 $740.00
Create Management Presentation 16 $185.00 1 $2,960.00
Obtain Management Buy In 2 $185.00 1 $370.00
Select Tailoring Team 2 $185.00 2 $740.00
Select Process Baseline 7 $75.00 2 $1,050.00
Tailor Process 16 $75.00 6 $7,200.00
Create Process Description 40 $75.00 2 $6,000.00
Create Work Product Templates 16 $75.00 2 $2,400.00
Create Work Product Checklists 16 $75.00 2 $2,400.00
Create Training Course 40 $75.00 1 $3,000.00
Create/Modify Tracking Tool 40 $75.00 1 $3,000.00
Select Metrics 20 $75.00 6 $9,000.00
Train Pilot Team 4 $75.00 7 $2,100.00
Pilot Process 4 $62.50 5 $1,250.00
Evaluate Pilot 4 $75.00 6 $1,800.00
Improve Process based on Pilot 4 $75.00 2 $600.00
Schedule Training 4 $41.00 1 $164.00
Conduct Training 4 $68.75 80 $22,000.00
Roll Out/Evangelize Process 4 $75.00 6 $1,800.00
Collect metrics 4 $41.00 1 $164.00
Re-evaluate and Improve Process 4 $75.00 6 $1,800.00

Total 255 $70,538.00

32

Recurring Cost of Process Improvement: In addition to the initial cost of $70,538, there
will be a recurring cost of $3,641.25 for every inspection that is held as shown in Table
10.

Return on Investment of Process Improvement: This last chart (Table 11) utilizes the
costs associated with the cost of defects and the initial and recurring cost of inspections to
determine the return on the investment. To determine the return, additional information is
needed. The average number of defects found per inspection is 7.5. This number comes
from an inspection process used by a major Silicon Valley software company for a one
year period by 450 employees. There are industry studies that would indicate that 7.5 is a
conservative number and many more defects may actually be found. Therefore the break-
even point is 1.53 inspections, meaning that halfway through the second inspection the
cost savings of finding and removing defects would cover the cost of adding inspections.
Every time an inspection is held a $46,020 savings is realized. Assuming that 4
inspections per month are held, the break-even would occur in week 2 of the first month
and the return on the investment over a year would be approximately 10 times. The return
on investment calculation would indicate implementing the inspection process
improvement would be a good investment in terms that a Chief Financial Officer would
understand.

Direct Cost of Defects $6,621.50

Direct Cost of Adding Inspection Process Step $70,538.00

Cost of Each Inspection $3,641.25

Average Number of Defects Found per Inspection 7.5
(Industry Actual)

Break Even (in number of inspections) 1.53

Inspections per month 4

Break Even (in months) 0.38

Cost of Inspections for a year (including start up) $245,318.00

Savings in removed defects for a year $2,383,740.00

Return on investment for a year 9.72

Table 11. Return on Investment of Process Improvement

33

Phrases that may be heard during Stage Three are:
Developer Tell me what you want to measure and I’ll be sure to do it
Manager I need to keep the project on track
SQE We don’t care who made the errors, just want to minimize them
Stakeholder What do I get out of these measurements

Some of the signs of a project moving from Stage Three to Stage Four include:
 Recognize need for templates, may start developing them from checklists
 Defect rates are being calculated and reviewed
 Code coverage results indicate new tests needed

Stage Four: Measurement Based Improvement

Now that so many measurements have been made on the code and processes, this stage
focuses on what improvements may be made based on the measurements. The questions
asked at this stage tend to be related to how to improve, how to use the information from
the earlier stages to make improvements that have a positive impact.

Risk Grading Tool: The use of a tool to do the risk-based grading of the software product
enables documentation of the decisions made and reasons why, which may become
important in audits and future use of the product. Either the SQE group or the
development team or a combination can enter the information into the tool and the rest of
the team members, including management, have the opportunity to review, discuss and
concur on the decisions. This leads to a common understanding of the project risks and
mitigation strategies being used. The Risk Assessment tool can be used in stage four to
push further down into the software “ecosystem”. Not only are primary codes risk
assessed, but the supporting libraries, feeder codes, procured codes, and open source
codes are individually assessed. It would be important to identify cases where a Risk
Level 4 code was providing important data to a Risk Level 1 code. There are cases
however where it may be feasible to have a lesser risk level code feed a higher risk level
code. For instance, a risk level 3 code uses a risk level 4 code’s display software. Since
the display software does not alter the computations in the risk level 3 code, it may be
possible to devise a mitigation strategy, by requiring the risk level 4 code to pass a set of
tests that are built from the risk level 3 code’s outputs. This additional testing on the risk
level 4 code may then allow it to be used to support a risk level 3 code because the risk of
using it has been mitigated with additional testing.

Feature Coverage: For one code team, statement coverage did not provide all of the
information they were looking for so they worked with their SQE to implement feature
coverage. The results of which led the developers to champion feature coverage and
extended it to count the number of times a feature was executed and by which test case.

34

Feature coverage was added by modification of the source code rather than by adding a
tool. Feature coverage results led to the creation of a feature based test matrix that is used
to selectively test any new capabilities that are added. In other words if a developer
wants to modify feature A, he or she could determine which regression tests to run for
that feature, in addition to whatever unit tests the developer has already run.

Levels of Test Rigor: Test code coverage along with test timing data results are quite
helpful in determining which test cases are most useful for developing different levels of
system tests, such as smoke, nightly and release test suites. The smoke tests might be
used for regression testing prior to developer check in. They run fast, no more than 30
minutes, so they will tend to get used. They would consist of the quickest running tests
that achieve the most code coverage. Nightly tests could take three or four hours, and
achieve great regression test coverage. Release tests may take a couple of days, but are
not frequently run, usually just prior to a scheduled release.

Risk Management: In order to understand which improvements will be most beneficial to
a project, it is important to know what concern or risk they are intended to address. This
implies that the project has a risk management plan. The SQE and project team work
together to identify, assess, analyze, track, review and ultimately retire risks. When
considering implementation of a process improvement activity, the team will review their
risks and analyze the impact of the activity on the overall success of the project. An
effective risk management plan is one that is dynamic and constantly reviewed. Risk
Management plans are frequently written once early on and not consulted for the
remainder of the project. To avoid this, consider putting the risks in a tracker tool and
update them as part of regular status meetings. Add new risks that evolve during the
project, and remove risks that are no longer a threat.

Test Automation: The SQE group can be invaluable in automating the test process. They
may write shell scripts or implement a more sophisticated test harness system, or utilize a
number of open source and commercial test automation solutions. Test automation can
apply to regression testing, functional testing, performance testing, security testing, and
by using virtual machine and hypervisor technologies, platform and installation testing.
The risk level of the product is an indicator of the level of testing required. The higher
level of risk, the more depth and types of testing are needed. As mentioned in the stage
three under static analysis, the SQE group may also fix the code based on static analysis
results. One pattern that emerged from static analysis was a questionable coding practice
that is repeated thousands of time in the code, for instance, using an input or string
manipulation command that depends on a delimiter for determining string length rather
than depending on the string itself to do it. Many languages contain alternate source code
statements that would set an upper limit on the string length so an overflow condition
could not be encountered. SQEs can write code fixing macros or special automated
scripts that can replace all the instances of the offending statements with more secure
code. Information learned from these experiences makes good input for the next iteration
of the coding template.

35

Best Practice Forum: As development teams begin to see the value of Software Quality
Engineering they start to share their experiences with their colleagues on other projects.
Regular meetings, forums, or blogs to share what works and what does not work can
become a regular part of the enterprise’s culture. A safe environment must be created
first, where it is okay to share failures. Management should be discouraged from
participating in these forums, as the purpose is to improve process and to openly discuss
ideas. Ideas for process improvement should flow from those who actually do the work.
By participating in best practice forums, the teams learn what works and doesn’t work for
their colleagues in a safe, non-threatening environment. In many cases these discussions
provide the justifications needed to lead a team to make changes to their processes and
tools. The SQE group is an observer in these meetings and may provide technology
details to aid in the developers understanding of terminology.

Benchmarking: Enterprise level best practice forums may lead SQEs and developers to be
curious about other enterprises or even other industries, leading to the practice of
benchmarking. Our SQE’s have benchmarked other National Laboratories in the United
States and the United Kingdom. The results of these benchmarks have resulted in the
adoption of common test tool automation and software development estimation methods.
SQEs have ventured out to unrelated industries such as a large California peanut roasting
and packaging plant13 and a world class custom motorcycle builder14.

From the peanut plant the lesson of software security was re-emphasized. The plant had
recently had one of its large and expensive peanut packaging machines stolen. This
machine takes a very large truck to carry and certainly is not something that could be sold
easily on eBay. The large machine was left outside temporarily as part of a refurbishing
effort. The theft was most likely an inside job or done by someone in the packaging
industry. Thieves will go to great lengths to steal things if there is a way to do it. As a
result of this benchmark, all of our scientific codes are now run though static analyzers
and detected weak security practices in the code are fixed. We had always believed that
since our codes are not public facing, security was not a top priority.

From the motorcycle production line we learned about safety. Three mechanics assemble
each motorcycle. One mechanic will take the new bike on its first test ride, but which of
the mechanics will take the first ride is unknown during assembly. Needless to say the
motorcycle mechanics are highly motivated to tighten down all the bolts and assemble
things correctly. Also we learned that on these high end bikes, all the wiring is run
through the frames. Not only does this eliminate unsightly cable bundles, it protects the
wires. Most of the accessories (lights, mirrors, foot pegs) were derived from separately
sold bolt-on accessory parts. What does this have to do with software development? How
about value of pairs programming and involving real users and stakeholders in the project
all along, data hiding and encapsulation as a good design practice, and the concept of
using “plug ins” to enhance IDE’s like Eclipse. A stage four SQE should always be
searching for ways to improve.

36

Phrases that may be heard during Stage Four are:
Developer Wow, I thought having lots of tests was required
Manager Geez, I’m getting less complaints
SQE Code coverage shows these few tests are most important
Stakeholder How does this compare to others in this industry?

Some of the signs of a project moving from Stage Four to Stage Five include:
 Developers asking for more effective test cases
 Regular use of tools to document processes and decisions

Stage Five: Implement Improvements

At this stage, the development team is asking for more help with automating anything
and everything to help simplify their lives. They realize some of the tasks that are taking
too much of their time, such as constantly fixing their build system for each different
platform, which makes the build system quite brittle. The SQE group can automate the
build efforts by using tools, such as Autoconf, Ant and Electric Cloud, to develop scripts
that reliably find the needed files and libraries on most platforms. It is important that the
developers be able to override any defaults in these scripts as their knowledge of their
code and computing platform leads to more efficiency.

Trending: While the appeal of the dashboard report with gauges may seem initially
appealing, developing reporting tools to keep track of trends over time of measured
information is useful for determining feedback from process changes or new tools.
Sometimes the trending information can be quite simple, such as the level of compiler
warnings. Complier warnings can be a useful source of important information about
potential problems in the code. All too often these warnings get ignored, because under
pressure the developers are just looking to get an error free compile. Keeping track of the
number of compiler warnings can be used as a trigger to stop and fix up the code when
they exceed a certain threshold. The information to capture and display compiler
warnings can be scooped up using scripting languages like Perl or Python and displayed
on a project web page. The bottom graph in Table 12 was drawn using a Python based
Goggle plotting package. The warning levels are plotted for various platform types. The
big jump in warnings on build 156 got the SQE’s attention. Investigation showed that the
compiler warning level has been turned up for that and subsequent builds. Other graphs
shown are number of users and CPU hours consumed over time. Building trending tools
is a prime activity of stage five SQE organizations.

37

Table 12. Trending

Test Improvement: Test case code coverage is conducted with regular frequency either by
the SQE or developers. These results are used to continuously improve the test case
suites and identify those tests that are best for any given feature. In many cases, the
group will develop web-sites and email messages to report test results to the development
team. Defect trends and metrics are developed from this information that can assist in
identifying systemic issues that need to be addressed to improve the quality of the code
and development processes. Automated test suites should be reviewed on a regular basis
to assure the tests are still relevant and passing (or failing) for the right reasons. One
developer group added an arbitration script, if the regression tests start failing, what was
the last source code change made before the failures started?

Pilots: Piloting is the SQE practice of trying out new tools and techniques in a “sandbox”
environment where success or failure during evaluation will not impact the productivity
of the developers. The SQE at this stage of maturity should be involved in how to
automate all phases of the software development lifecycle. Their goal is to simplify the
developers’ lives so that defects are prevented from ever getting into the code. SQE’s

38

spend time investigating and piloting new technologies, suggesting to the development
team and management those that hold the most promise of being appropriate for the team.

It is important to realize that many times a suggestion from the SQE group may not be
adopted right away without a proof of concept first to demonstrate the advantages of the
new tool or technique. The development team may not have the time to learn a new tool
or may not see how it helps them without actually using the tool. However, even if
initially rejected by developers, the SQE’s time has not been wasted as it set the
groundwork for the time when the development team realizes that indeed, the new
capability does simplify their lives.

Tool Usage: By this stage the development teams have many tools in place that they are
using as part of their ‘way of doing business’. The SQE group needs to monitor how the
teams are using the tools in order to encourage efficient and appropriate use. At times,
the development team may partially use a tool but not follow through with complete use.
As an example, a project is using an issue tracking tool. They are diligent in entering,
reviewing and responding to entries. However, they are lax to actually close out issues
within the tool. Having issue trackers, for instance, is a two edged sword. On the one
hand it assures that discovered defects will not be lost or fall through the cracks, on the
other hand, aging reports from the tools will show management or auditors if defect
fixing is being neglected in the pursuit of more glamorous tasks.

Pre- Design Capture: One of the last areas to mature in our software engineering
environment was in design. With today’s high level languages and visual tools the
temptation to go from requirement description to code is high. While initially there may
not seem anything wrong with the idea of not capturing design artifacts, design trade off
discussions or reasons for choosing one design or architecture over another may be useful
in the future. To accommodate this notion, the SQE’s worked with the developers to
develop a design template that is part of any design discussions. The template can be
filled out during meetings electronically or updated by participants. The idea is to capture
why approaches are chosen. For instance choosing MPI over multi-threading, a binary
sort over a quick sort, or why the data is organized the way it is. Forums, wikis, or blogs
can serve the same purpose. The idea is to grab the information in real time as part of the
process. Table 13a shows a page from a pre-design discussion using the Source Forge
Enterprise Edition tracker tool with an SQE crafted template. The pre-design information
is version controlled, collaborative, and searchable so that it can be retrieved in the
future.

39

Table 13a. Pre-Design Capture

Post Design Capture: What about legacy software that has already been written? What
benefit can be achieved by going back and documenting the design? Probably not much
and most likely no one is going to want to do it. To solve this long standing dilemma the
SQE’s found a flow charting tool (Visustin, from Finland) which works with most all
contemporary and legacy languages. The legacy code is quickly flow charted and made
available under the Source Forge document repository for those who will be maintaining
or modifying the code in the future. Two other tools are also used to analyze existing
source code from a design perspective, those are Klocwork, which identifies paths
between files and modules and cyclic relationships, and McCabe Battlemap which can
show the calling hierarchy. Both tools provide code and object oriented metrics which
can be useful for prioritizing testing and refactoring. Table 13b shows an example
Visustin flow chart of some Python code. The tool allows output in common graphical
formats as well as direct export to MS Word, MS Power Point, and MS Visio.

40

Table 13b. Post Design Capture

Independent Audits and Assessments: One of the SQE concerns, at stage five maturity
level, is does the project or enterprise really see itself accurately? Have we become so
familiar with the development process that we can no longer see shortcomings or be
objective? To mitigate this risk the SQE does independent audits. Unlike the smaller
internal audlets, these independent audits are conducted by teams which consist of SQEs
from other parts of the enterprise and from other enterprises. They are costly to do, so
they are done about every three years, but have been most helpful in finding out what we
don’t know that we don’t know. Experience has taught us to use auditors (or assessors)
who are experienced in our industry, and do not have a hidden agenda, such as laying the
groundwork for obtaining a subsequent consulting contract to fix our shortcomings. From
these independent audits SQEs have learned to schedule internal audlets so they do not
get pushed aside and to schedule reviews of automated test suites to assure they get
periodically reviewed. The independent audits and assessments have also pointed out our

41

noteworthy practices and given some new ideas for the auditors to take back to their
enterprises.

Phrases that may be heard during Stage Five are:
Developer I want the SQE on my development team
Manager The SQE is my ‘go to’ person
SQE How much more do you want me to do?????
Stakeholder Wow, this software works correctly right out of the box!

What’s Next
What happens after Stage Five? Well you may have guessed the answer. In order to
achieve stage five SQE performance each of the SQEs has polished their developer skills
to a high degree. Because of this, many of the SQEs are encouraged to join the developer
ranks. In Stage Five the development team wants the SQE as a member of their team.
The developers recognize that the SQE brings skills to the team, understands their
challenges, and sees the ‘big picture’ and ultimately, the developers trust the SQE to
modify their code and write new code. As these SQEs go off to developer tasks, they are
replaced with more junior staff, meaning the maturity level after stage five may return to
earlier stages. This is because the new SQE’s will think they know it all; start whining
about developers, find documentation to their liking, etc. etc. This process is similar to
the phases of team development as described by Dr. Bruce Tuckman’s model of forming,
storming, norming and performing. In Dr. Tuckman’s model, the first three stages are
when the team members get to know and trust each other, when that happens they
perform well. The model described here has the same type of phases with a more diverse
team.

Summary
This white paper takes the perspective that Software Quality Engineering moves through
stages of maturity just like development does. It has attempted to define the relevant
terminology and define the purpose of SQE. This paper suggested empirically derived
traits of each SQE maturity stage. Also, that Software Quality Engineering is about more
than testing. Because real people are involved in software development and Software
Quality Engineering not all the traits may be true in each stage in your enterprise. In any
case, our hope is that this white paper may provide you with some ideas and hope for the
future in your quest to pursue improved Software Quality Engineering.

1 Pressman, Roger. Software Engineering: A Practitioner's Approach. Sixth Edition, International, p 746.
McGraw-Hill Education 2005.
2 DeMarco, T., "Management Can Make Quality (Im)possible," Cutter IT Summit, Boston, April 1999
3 McConnell, Steve. Code Complete First Ed, p. 558. Microsoft Press 1993

42

4 Gerald M. Weinberg (1971). The Psychology of Computer Programming. Van Nostrand Reinhold, pg
146-147
5 Pope, Gregory, “Why Software Quality Assurance Practices Become Evil!”,
http://www.stickyminds.com/s.asp?F=S8375_ART_2
6 Pope, Gregory, “Why Software Quality Assurance Practices Become Evil!”,
http://www.stickyminds.com/s.asp?F=S8375_ART_2
7 Collins, Jim, Good to Great, First Edition, HarperCollins Publisher, Inc., 2001.
8 Boehm, Barry, Chris Abts, A. Windsor Brown, Sunita Chulani, Bradford K. Clark, Ellis Horowitz, Ray
Madachy, Donald Reifer, Bert Steece – Software Cost Estimation with COCOMO II, Prentice Hall, Upper
Saddle River, N.J. 2000
9 Pressman, Roger. Software Engineering: A Practitioner's Approach. Sixth Edition, International, p 747.
McGraw-Hill Education 2005.
10 Boehm, Barry. Software Engineering Economics, Prentice-Hall, 1981.
11 Su, Qiang, Shi, Jing-Hua, Lai, Sheng-Jie, “The Power of Balance”, Quality Progress, February 2009, pp.
32-37.
12 Kerzner, Harold, Project Management – A Systems Approach to Planning, Scheduling and Controlling,
6th Edition, Van Nostrand Reinhold, New York, NY, 1998.
13 Nature Kist snacks, Stockton California, Ron Mozingo owner.
14 Arlen Ness Motorcycles, Dublin, California, Arlen Ness owner.

